
Towards Reproducible Research: Automatic Classification of

Empirical Requirements Engineering Papers
Clinton Woodson, Jane Huffman Hayes, Sarah Griffioen

Department of Computer Science

University of Kentucky

Lexington, Kentucky, United States of America

clint.woodson@uky.edu, hayes@cs.uky.edu, sarah.griff@uky.edu

ABSTRACT

Research must be reproducible in order to make an impact on

science and to contribute to the body of knowledge in our

field. Yet studies have shown that 70% of research from aca-

demic labs cannot be reproduced. In software engineering,

and more specifically requirements engineering (RE), repro-

ducible research is rare, with datasets not always available or

methods not fully described. This lack of reproducible re-

search hinders progress, with researchers having to replicate

an experiment from scratch. A researcher starting out in RE

has to sift through conference papers, finding ones that are

empirical, then must look through the data available from the

empirical paper (if any) to make a preliminary determination if

the paper can be reproduced. This paper addresses two parts

of that problem, identifying RE papers and identifying empiri-

cal papers within the RE papers. Recent RE and empirical

conference papers were used to learn features and to build an

automatic classifier to identify RE and empirical papers. We

introduce the Empirical Requirements Research Classifier

(ERRC) method, which uses natural language processing and

machine learning to perform supervised classification of con-

ference papers. We compare our method to a baseline key-

word-based approach. To evaluate our approach, we examine

sets of papers from the IEEE Requirements Engineering con-

ference and the IEEE International Symposium on Software

Testing and Analysis. We found that the ERRC method per-

formed better than the baseline method in all but a few cases.

KEYWORDS

Empirical research, reproducible research, requirements

engineering, machine learning, supervised classification

learning, statistical analysis, text classification, information

retrieval.

1 INTRODUCTION

Innovative research is a vital part of moving the requirements

engineering industry forward, spurring the development of

novel, faster, and better techniques. While current emphasis is

placed on “greenfield” research, there is a decline in reproduci-

ble research, regardless of whether the research being repro-

duced is greenfield or not. According to Popper [2], “Non-

reproducible single occurrences are of no significance to sci-

ence.” Studies show that up to 70% of academic research isn’t

able to be reproduced, which “represents a tremendous amount

of wasted effort and money [1].” If research cannot be repro-

duced, there isn’t an efficient way to determine its validity,

which results in it going unused.

Recent work funded by the National Science Foundation

developed a research framework called TraceLab [3].

TraceLab is designed to “provide an experimental environment

in which researchers can design and execute experiments [3].”

While TraceLab allows researchers to easily reproduce experi-

ments, it should first be determined if the work in a given re-

search paper even has the possibility of being reproduced.

While the ultimate goal of our research is to be able to quickly

determine whether an experiment or study in a paper can be

reproduced, this paper addresses antecedent questions to sup-

port that objective.

The first step in our overall process is to determine whether

a paper is related to Requirements Engineering (RE), as we are

focused on replicating requirements engineering research.

Next, we need to determine whether the RE paper is empirical.

We define an empirical paper as one that is based on observed

and measured phenomena, where results are analyzed and con-

clusions are drawn.

We start by applying natural language processing (NLP)

techniques. Once the text of the research papers has been ex-

tracted and processed, we apply two methods for determining

features of the papers. The first is a baseline method which

uses the frequency of certain key words. The other method, the

Empirical Requirements Research Classifier (ERRC), uses

supervised learning as the basis for the features. Both methods

have been implemented as TraceLab components.

We built a training set by manually labelling papers from

several years’ worth of papers from two different conferences

(one RE, one not). We then applied popular classification

techniques to each model: Weka’s [6] implementation of Naïve

Bayes [7], J48 [8], and ZeroR [9]. We used precision, recall,

and f-measure, as well as the prediction accuracy, to evaluate

the ERRC and baseline methods.

The paper is organized as follows. Section II discusses the

research method. Section III addresses the study approach,

including the threats to validity. The results and analysis are

presented in Section IV. Related work is discussed in Section

V. Section VI presents our conclusions and future work.

2 METHOD

Figure 1 presents a high level overview of our ultimate goal: to

automatically identify reproducible empirical requirements

engineering papers. The shaded blocks are in the scope of this

paper. Toward our goal we developed a method to identify

empirical requirements engineering papers, the ERRC.

As can be seen in the figure, we first created a directory for

each year of each conference and saved the file for each paper.

To support model building, we manually labelled each paper as

being empirical RE, non-empirical RE, empirical non-RE, or

non-empirical non-RE.

Next, each paper was parsed. The newline and return char-

acters were then removed. This allowed, for example, any

phrases spanning multiple lines to be read as a whole. Pre-

processing was performed: we replaced all punctuation except

apostrophes and dashes with spaces to allow for easier text

recognition. We then used a filter to remove stop words. Stop

words are common words that don’t add meaning to a sentence

(i.e., “the,” “an,” “and”). Finally, numbers were removed from

the text.

Once the text was processed, we proceeded with data col-

lection. Each remaining word was shortened to its stem (i.e.,

“required,” “requirements,” “requiring” all were stemmed to

“requir”) and added to the list of stems (unless the stem had

already been found, in which case we increased the count for

that stem). Stemming words to their morphological root in-

creases the likelihood of similar or related words being

matched.

Once data collection was complete, we used two different

feature selection methods to build the classification models.

2.1 Baseline Method

The baseline approach used a simple term frequency count

for developing features of the model. We identified key words

from previous RE and empirical papers. Specifically, we iden-

tified the top five most frequently used keywords from the most

recent RE and ISSTA conferences, which spanned over 200

papers. The term counts of the selected key words were then

used to build the baseline model.

2.2 ERRC Method

The ERRC method represents a more general approach to

paper classification. Unlike the baseline method, which uses

only the provided key terms, the ERRC method recorded the

frequency of all stemmed terms found in a paper. Once a com-

plete list had been created, the terms were sorted from most

frequent to least. The top ten most frequent stemmed terms

were then recorded as the unique features for that paper. The

result was the ERRC model that can be passed to a classifica-

tion technique.

2.3 Analysis of Methods

To measure the effectiveness of the baseline and ERRC

methods, we used Weka to classify the resulting models. Each

classification technique, ZeroR, Naïve Bayes, and J48, was

applied to each method’s model. The models were evaluated

using cross validation at 10, 20, 30, and 40 folds. In cross vali-

dation, the dataset is divided into k subsets. One of the k sub-

sets is used for the testing set, while the other k-1 subsets are

used for the training sets. The advantage of this method is that

every element gets to be in the testing set exactly once, and in

the training set k-1 times [15]. Each cross validation was run

10 times with a different seed, to randomize the folds. We used

the average of the results of all runs to perform analysis.

Figure 1: High level overview of approach to identification of

reproducible empirical requirements engineering papers.

3 EMPIRICAL STUDY

We performed a case study aimed at evaluating whether RE

empirical research papers can be automatically classified. We

studied two research questions.

RQ1: Can NLP features be used to characterize empirical

and/or RE papers?

RQ2: Can the ERRC method predict paper classifications

better than the baseline method?

Studying RQ1 and RQ2 will help determine whether or not

a model can be built to classify RE empirical papers. With this

question answered, we will be able to move onto our longer

term research project of determining if it is possible to classify

papers as reproducible.

For this study, we have a null hypothesis

H0 : AERRC = AB

and an alternate hypothesis

H1 : AERRC > AB

where A is the accuracy of the method, ERRC is the ERRC

method, and B is the baseline method.

3.1 Objects of Analysis

For the objects of analysis, we chose conference papers

from the IEEE Requirements Engineering (RE) conference and

the IEEE International Symposium on Software Testing and

Analysis (ISSTA). The RE conference ensures that papers on

requirements engineering research are represented; the ISSTA

conference ensures that non requirements engineering research

is represented. Further, we chose these two conferences since

they have both RE and empirical papers.

The breakdown of papers used is shown in Table 1. We

chose the years 2000, 2005, and 2015 for RE to represent an

even division of years across the past conference offerings. We

chose 2000, 2004, and 2015 for ISSTA for the same reason.

The papers ranged from 5-10 pages in length, with most of

them being 10 pages.

Once a suitable subset of papers was gathered, we manually

classified all the papers. To accomplish this, we had one of the

co-authors read through the papers, labelling them as RE or

not, and empirical or not. Note that there is a good balance of

empirical/non empirical and RE/ non RE papers, as can be seen

in the bottom row of the table.

Table1: Conference Papers

Year Empirical
Non-

Empirical
RE

Non-
RE

Total

IEEE
RE

2000 7 6 12 1 13

2005 21 23 41 3 44

2015 29 18 43 4 47

IEEE
ISSTA

2000 12 9 1 20 21

2004 11 17 1 27 28

2015 21 21 0 42 42

Total 101 (52%) 94 (48%) 98 (50%) 97 (50%) 195 (100%)

3.2 Variables and Measures

This section describes the independent and dependent vari-

ables of our study.

3.2.1 Independent Variables. We had two independent

variables. First, we varied the feature selection

methods, applying a baseline approach and the

ERRC. The baseline method was developed to be a

simplistic approach to be used as a control method

against which to judge the ERRC method.

Second, we used three classification techniques in the

study: ZeroR, Naïve Bayes, and J48. We implemented these

methods using the Weka Data Mining Software [6].

ZeroR is one of the simplest classification methods. It ig-

nores any predictors, only relying on the target of the data.

With its lack of ability to predict anything other than the ma-

jority class, it is unhelpful for practical prediction, but is useful

for creating a baseline result against which to compare the

other techniques.

The Naïve Bayes classifier is built upon the Bayes’ theo-

rem. Naïve Bayes uses independent assumptions for the fea-

tures to predict the classification.

J48 is an open-source Java implementation of the C4.5 al-

gorithm. It builds decision trees from the training set.

3.2.2 Dependent Variables. We chose accuracy, recall,

precision, and f-measure as the dependent variables.

Accuracy measures the percent of correctly classified

papers. Precision measures how many of the

retrieved elements are relevant (how many of the

papers that ZeroR indicates are RE papers truly are?).

Recall, on the other hand, measures the percentage of

true instances that are retrieved (did ZeroR retrieve

all the RE papers?). F-measure is the harmonic mean

of recall and precision and provides a single measure

to represent both.

3.3 Study Operation

To perform the feature setup and collection, we used the

Apache Lucene and Solr libraries [12]. These Java-based li-

braries provide text indexing, searching, and advanced analy-

sis/tokenization capabilities. We used these libraries to remove

stop words, remove special characters and numbers, and to

stem words and count their frequencies.

To help speed up the development and evaluation process,

and to allow others to easily reproduce our experiment, we

implemented the study as a collection of TraceLab compo-

nents.

3.4 Threats to Validity

The primary threat to external validity in this experiment

involved the datasets. Other datasets may be larger, or have

different term frequencies. A larger dataset may generate a

more diverse classification model. Also, due to the inability

and impracticality of building a model that uses every paper

from every conference from every field, we mitigated the threat

by using papers from several years’ worth of two different con-

ferences. We cannot claim that our results will generalize to

other datasets.

For internal validity, the primary threat involved the manual

classification of the training set. To reduce this threat, we had

one co-author perform the labelling. These labels were then

later corroborated by another co-author. Both co-authors

worked independently. The co-authors discussed conflicting

labels until agreement was reached. To perform analysis, we

used popular and established tools (i.e., Weka).

For construct validity, the primary concern was the depend-

ent variables used to answer the research questions. To address

this threat, we used the standard and well accepted measures of

accuracy, recall, precision, and f-measure. To minimize con-

clusion validity threats, we performed statistical analysis to

interpret the results.

4 RESULTS AND ANALYSIS

All of the tables for our results can be found at

www.cs.uky.edu/~hayes.

4.1 RE Paper Classification

Figure 2 shows the percent of correctly classified empirical

papers using the Naïve Bayes technique. As can be seen, the

ERRC method has about a 2% accuracy benefit over the base-

line method at 10 folds. Figure 3 shows the same using the J48

technique. The ERRC method outperforms the baseline meth-

od by a maximum of 10%. Figures 4 and 5 show the precision

for the empirical classification using Naïve Bayes and J48.

These show that the ERRC method has increased precision

over the baseline method using J48, but not when using Naïve

Bayes. Figure 6 shows the recall using J48 for the empirical

classification. As can be seen, the ERRC method has a steady

value across all numbers of folds, whereas the baseline method

varies greatly, with its lowest value under 0.2. Figure 7 shows

the f-measure using Naïve Bayes while classifying empirical

papers, with the ERRC having almost double the value of the

baseline method.

Figure 3: Percent of Correctly Classifed Empirical Papers using

J48. X-Axis = number of Cross validation folds times 10.

Figure 2: Percent of Correctly Classifed Empirical Papers using

Naïve Bayes. X-Axis = number of Cross validation folds times 10.

Figure 4: Naïve Bayes Precision for Classifying Empirical

Papers. X-Axis = number of Cross validation folds times 10.

Figure 5: J48 Precision for Classifying Empirical Papers. X-

Axis = number of Cross validation folds times 10.

Figure 6: J48 Recall for Classifying Empirical Papers. X-

Axis = number of Cross validation folds times 10.

Figure 7: Naïve Bayes f-measure for Classifying Empirical

Papers. X-Axis = number of Cross validation folds times 10.

4.2 Empirical Paper Classification

The percent of correctly classified papers using Naïve

Bayes can be seen in Figure 8. As shown, the ERRC method

outperforms the baseline method by about 10%. Figure 9 also

shows the ERRC method outperforming the baseline method

using J48. While the ERRC and baseline methods have close

recall, as seen in Figure 10, the ERRC has f-measure roughly

12% higher, which is shown in Figure 11.

Figure 8: Percent of Correctly Classifed RE Papers using

Naïve Bayes. X-Axis = number of Cross validation folds

times 10.

Figure 9: Percent of Correctly Classifed RE Papers using

J48. X-Axis = number of Cross validation folds times 10.

Figure 10: J48 Recall for classifying RE papers. X-Axis =

number of Cross validation folds times 10.

Figure 11: Naïve Bayes f-measure for classifying RE papers.

X-Axis = number of Cross validation folds times 10.

4.3 Analysis

While the ERRC and baseline methods may have similar

accuracy classifying empirical papers, the ERRC has about

10% increased performance for classifying RE papers.

Surprisingly, the baseline method outperformed the ERRC

method for classifying some empirical papers using Naïve

Bayes at higher folds. This result does not mean that the

ERRC method is not useful. The ERRC method still has an

advantage of automatic modelling over manually assigning

terms.

For RE classification, the ERRC method clearly outper-

forms the baseline method, with a much higher classification

accuracy, recall, and f-measure. The baseline method does

have a slightly higher precision, though. This higher precision

could be due to the baseline method naively predicting an RE

classification more often than the ERRC, which would explain

the low recall and f-measure values. This is not certain though

as there was not an overwhelming majority class in the dataset.

Recall from Table I that the training set was well balanced,

with 98 RE papers and 97 non-RE papers.

Table 2 shows the one tail t-test statistical analysis of the

accuracy, recall, precision, and f-measure from the study. For

this study α = 0.05, meaning that there is a 5% or less probabil-

ity that the results are due to chance. The values in Table 2

which are less than α, and therefore significant, are bolded. As

shown in the table, all values are significant except for the Na-

ïve Bayes for empirical papers and J48 for RE papers. To an-

swer RQ1, we can use NLP features to characterize empirical

and/or RE papers. Our results show that we can characterize

empirical papers with roughly 55% accuracy and RE papers

with roughly 89% accuracy. Answering RQ2, the ERRC does

predict paper classifications as well as or better than the base-

line method. Due to the significance of the results, we can re-

ject our null hypothesis H0 in favor of our alternate hypothesis

H1.

Table 2: Statistical analysis

Empirical Requirements

Accuracy P(T<=t) one tail

Naïve Bayes 0.294063822 9.22234E-06

J48 0.01042203 0.022431733

Recall P(T<=t) one tail

Naive Bayes 9.71788E-07 4.78814E-06

J48 0.009172371 0.135325556

Precision P(T<=t) one tail

Naive Bayes 0.000168851 0.00188626

J48 0.016667758 0.000890836

F-Measure P(T<=t) one tail

Naive Bayes 1.46014E-06 5.56186E-06

J48 0.010584164 0.057447213

5 RELATED WORK

Hayes, Li, and Rahimi [16] discuss the potential that can be

achieved in requirements engineering research when the Weka

machine learning software suite and the TraceLab project are

combined. Towards this goal, they implement a proof of con-

cept in the form of a TraceLab component which uses the We-

ka classification trees. They demonstrate the usability of their

component on two different requirements engineering prob-

lems. They also offer insights on using their Tracelab Weka

component. Their work relates to this paper as we also use

TraceLab and Weka to support our study.

The first defense against software bugs is to develop testa-

ble requirements. This allows developers to test that their im-

plementation of a requirement is correct. Hayes et al. [17] ex-

amined two datasets with requirement and code artifacts to

address testability from the perspective of requirement under-

standability and quality. Their work relates to this paper in that

both use machine learning to automatically classify a textual

dataset. We classify research papers, Hayes et al. [17] classify

whether a requirement is testable.

Dit, Moritz, Linares-Vasquez, Poshyvanyk, and Cleland-

Huang [4] attempt to remedy the problem of software mainte-

nance research studies having difficult to reproduce experi-

ments. They found that studies are hard to reproduce due to a

lack of datasets, tools, implementation details, and other varied

reasons. This hurdle hinders progress in the field by requiring

researchers to devote a significant amount of time to recreating

test processes to determine if new techniques truly are an im-

provement over existing ones. Their research is applicable to

our work by attempting to alleviate the difficulty of sharing

experiment sources. With the approach of Dit, Moritz, Linares-

Vasquez, Poshyvanyk, and Cleland-Huang, components can be

developed that can be used to reproduce an experiment on any

machine, with little or no setup required on the tester’s side.

Millions of apps can be found in the different app stores,

and with them billions of reviews for the apps. This large

amount of data is a significant source of user feedback that can

be used to develop higher quality apps. There is a challenge,

though, with sifting through which reviews are relevant or not.

Maalej and Nabil [5] discuss several techniques for classifying

these reviews into different types. This classification of un-

structured text is similar to our research of classifying confer-

ence papers.

McCallum and Nigam [7] discuss two different first-order

probabilistic model approaches to text classification using the

Naïve Bayes assumption: a multi-variate Bernoulli model and a

multinomial model. Their [7] results find that the multi-variate

Bernoulli method performs better with small vocabulary sizes,

but the multinomial method performs better with larger vocab-

ularies. Their work relates to our paper as they also use a Naïve

Bayes method to classify the text in their experiment.

6 CONCLUSION AND FUTURE WORK

With the quantity of academic research, and concomitantly

the number of publications, on the rise, the amount of research

that cannot be reproduced has also risen. To be able to deter-

mine the reproducibility of an academic research paper, we

have worked on determining if a paper is an RE paper, and then

whether that paper is an empirical paper. To approach this, we

took papers from the IEEE Requirements Engineering and the

IEEE International Symposium on Software Testing and Anal-

ysis conferences and collected data to build training sets. We

built a baseline keyword-based method and our ERRC method

to model the academic research, then applied various classifica-

tion techniques. Our results show that our ERRC method per-

formed approximately 3% better than the baseline method at

classifying empirical papers and 12% better when classifying

RE papers.

While the ERRC method shows promise, there is definitely

room to improve. The first possible improvement would be to

expand the stop word list to help further filter out words that

add no meaning to the classification of the paper. Along the

same lines, other filtering could help narrow the scope of what

the paper being classified is about. Possibilities include com-

paring the paper’s text against a dictionary to remove acro-

nyms, project names, and other special words. The potential

downside of these approaches could be filtering too much out,

thus possibly removing important words. Another way to pos-

sibly filter the text of the paper under analysis would be to

weight the words based on the location in which they were

found in the paper. Words found in an abstract or conclusion

could be given more weight than words found in the body of

the paper, for example. The reasoning for this is that we hy-

pothesize that words found in those locations would more di-

rectly address the content of the paper being analyzed.

Source code and datasets for the study can be found at

www.cs.uky.edu/~hayes.

ACKNOWLEDGMENT

This work was supported in part by NSF grant CCF-1511117.

REFERENCES

[1] Hahnel, Mark. “Reproducility of Research – A New Standard.”

Figshare. 14 Aug. 2012. Web. 1 June 2016
[2] Popper, K.R., “Non-reproducible single occurrences are of no

significance to science.” 1959. The logic of scientific discovery.

Hutchinson, London, United Kingdom.

[3] Keenan, Ed, Adam Czauderna, Greg Leach, Jane Cleland-Huang,

Yonghee Shin, Evan Moritz, Malcom Gethers, Denys Poshyvanyk,
Jonathan Maletic, Jane Huffman Hayes, Alex Dekhtyar, Daria

Manukian, Shervin Hussein, Derek Hearn. "Tracelab: An experimental

workbench for equipping researchers to innovate, synthesize, and
comparatively evaluate traceability solutions." Proceedings of the 34th

International Conference on Software Engineering. IEEE Press, 2012.

[4] Dit, Bogdan, Evan Moritz, Mario Linares-Vasquez, Denys Poshyvanyk,
and Jane Cleland-Huang "Supporting and accelerating reproducible

empirical research in software evolution and maintenance using

TraceLab Component Library." Empirical Software Engineering (2014):

1-39.I. S. Jacobs and C. P. Bean, “Fine particles, thin films and

exchange anisotropy,” in Magnetism, vol. III, G. T. Rado and H. Suhl,

Eds. New York: Academic, 1963, pp. 271–350.

[5] Maalej, Walid, and Hadeer Nabil. "Bug report, feature request, or simply

praise? On automatically classifying app reviews." 2015 IEEE 23rd
international requirements engineering conference (RE). IEEE, 2015.

[6] Hall, Mark, et al. "The WEKA data mining software: an update." ACM
SIGKDD explorations newsletter 11.1 (2009): 10-18.

[7] McCallum, Andrew, and Kamal Nigam. "A comparison of event models

for naive Bayes text classification." AAAI-98 workshop on learning for
text categorization. Vol. 752. 1998.

[8] Bhargava, Neeraj, Ritu Bhargava, Mainsh Mathura. "Decision tree
analysis on j48 algorithm for data mining." Proceedings of International

Journal of Advanced Research in Computer Science and Software

Engineering 3.6 (2013).

[9] Aher, Sunita B., and L. M. R. J. Lobo. "Comparative Study of

Classification Algorithms." International Journal of Information

Technology 5.2 (2012): 239-43.

[10] Cahoy, Ellysa. “What is Empirical Research?” PennState University

Libraries. http://psu.libguides.com/emp

[11] “About TraceLab,” COEST.

http://www.coest.org/index.php/tracelab/about-tracelab

[12] “Apache Lucene,” https://lucene.apache.org/

[13] Sayad, Saed. “ZeroR” An Introduction to Data Mining.

http://www.saedsayad.com/zeror.htm

[14] Sayad, Saed. “Naïve Bayesian” An Introduction to Data Mining.

http://www.saedsayad.com/naive_bayesian.htm

[15] Schneider, Jeff. “Cross Validation”.

https://www.cs.cmu.edu/~schneide/tut5/node42.html

[16] Hayes, Jane Huffman, Wenbin Li, and Mona Rahimi. "Weka meets

TraceLab: Toward convenient classification: Machine learning for

requirements engineering problems: A position paper." Artificial
Intelligence for Requirements Engineering (AIRE), 2014 IEEE 1st

International Workshop on. IEEE, 2014.

[17] Hayes, Jane Huffman, Wenbin Li, Tingting Yu, Xue Han, Mark Hayes,

and Clinton Woodson. "Measuring Requirement Quality to Predict

Testability." 2015 IEEE Second International Workshop on Artificial
Intelligence for Requirements Engineering (AIRE). IEEE, 2015.

